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Abstract-Transport of a solute in a laminar flow of a Newtonian fluid through a permeable circular duct, 
where there exists a small radial flux of the fluid (ultrafiltration) at the duct wall, is considered theoretically. 
Assumptions are made which are satisfied in a test-dialyzer. An exact analytical solution for the con- 
centration profile is obtained by using separation of variable method. The necessary requirement that the 
solution must tend to the pure dialysis case solution in the limit ultrafiltration tending to zero is fultilled. 
Exact analytical expressions are derived for the eigencons~n~ of the solution. This solution is applied to 
blood flow mass transfer in a hollow nbre artificial kidney performing simultaneous dialysis and ultra- 

nhration. Comparisons are made with earlier work. 

1. INTRODUCTION 

STEADY state heat and mass transfer problems of 
incompressible laminar flows in circular and flat ducts 
have been studied theoretically by a large number of 
investigators, as these problems are both of fun- 
damental and technological importance. In the pre- 
sent paper, we consider the steady state mass transfer 
in a homogeneous fluid which flows through a straight 
circular duct. The mass transfer entrance region is 
preceded by a part of the duct in which the fluid flow 
gets fully developed. In the fluid medium in the duct, 
mass transfer occurs due to diffusion (dialysis) and 
convection (ultrafiltration) of a solute across the mem- 
brane (duct wall) to another fluid called the dialysate, 
where the dialysate is a solvent that gows outside the 
duct and flows fast and with mixing. In the part of the 
duct where mass transfer occurs, the flow is laminar 
and is assumed to be Newtonian and of constant 
physical properties. It is assumed that axial mass 
diffusion is negligible and that dialysate side mass 
transfer resistance and bulk con~ntration, ultra- 
filtration velocity at duct wall and mass transfer 
entrance section concentration are constant. The mass 
flux to the inner surface of the duct wall is equal to 
the mass flux through the wall. 

This work is motivated by the blood flow mass 
transfer problem occurring in a hollow fibre artificial 
kidney that performs dialysis and ~tra~lt~tion sim- 
ultaneously. With regard to artificial kidney, sim- 
ultaneous dialysis and ultrafiltration (SDF) is of cur- 
rent interest. This SDF procedure provides adequate 
removals of both small molecules (low molecular 
weight toxic molecules) and middle molecules (inter- 
mediate molecular weight toxic molecules) from 
uremic blood, which is not possible by dialysis or 
ultrafiltration alone. According to clinician’s review 
[l] and clinical experiences of Leber ef al. [2] and 
Wizemann et al. [3], the SDF procedure is well tol- 
erated by the patients and reduces the treatment time. 

Successful rigorous theoretical studies [4-6] on the 

above-stated mass transfer problem are available, but 
for its particular case of zero ultrafiltration, i.e. for 
the case of pure dialysis. Jaga~athan and Shettigar 
[7] attempted to provide a rigorous theoretical study 
on the problem in the case of SDF, but their work is 
open to discussion as will be shown later. The present 
paper is concerned with a new approach to the prob- 
lem of combined dialysis and ultrafiltration stated 
above. As compared to the earlier work [7J, some of 
the features of the present study are as follows. 

(1) An appropriate non-dimensionalization scheme 
is used. 

(2) A correct expression for axial velocity com- 
ponent from Yuan and Finkelstein (81 is used. 

(3) An analysis is given from which pure dialysis 
case results are deducible as a limiting case of zero 
ultrafiltration. 

(4) Exact analytical expressions for eigenconstants 
under variable separable method are obtained. 

2. ANALYSIS 

Using the cylindrical polar coordinates (f, 8, i) 
for the interior of the circular duct, the equations 
governing the mass transfer problem in hand may be 
written as follows. 

The mass balance equation : 

The initial condition : 

c=q atf=O. (2) 

The boundary condition : 

--I);+ v&J= K,(c-c,)+T,Vwc 

at ?= R, f > 0. (3) 
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NOMENCLATURE 

a2" series coefficients introduced by R hollow fibre radius 
equation (27) RD dialysate side mass transfer resistance 

AllI eigenconstants introduced by & ultrafiltration Reynolds number 
equation (32) Sh, wall Sherwood number 

B parameter given by equation (10) TR membrane transmittance coefficient 
c local concentration u dimensionless form of ti 

co bulk dialysate concentration %J &ll%l(O) 
ci mass transfer entrance section u velocity component in x-direction in 

concentration dialyser 

CM mixing-cup concentration aIll mean of 1 

Cmid central line concentration &SO) I, at x = 0 

C, wall concentration V dimensionless form of d 
D diffusivity coefficient V ultrafiltration rate 
F dimensionless form of c 5 velocity component in r-direction in 

K, wall mass transfer coefficient, dialyser 

(l/&S l/PnJ) rw ultrafiltration velocity 
L dialyzer length X dimensionless form of 2 

Nh number of hollow fibres XL valueofxatx= L 

P function given by equation (33) f axial coordinate 

P, membrane permeability X function introduced by equation (21) 

Q flow flux in dialyzer Y function introduced by equation (21). 

Qi value of Q at mass transfer entrance 
section 

r dimensionless form of? Greek symbols 
r radial coordinate under cylindrical Bm eigenvalues 

polar coordinate system, with origin 6D C&i 
at the centre of mass transfer entrance kinematic viscosity 
section ultrafiltration Peclet number. 

The natural boundary condition : We use the following non-dimensionalization 

iL scheme : 
F_=O atP=O. 
r 

(4) 

The axial velocity component ri and the radial vel- 
ocity component 8, according to Yuan and Finkelstein 
[8], are given by 

I = 215,(O) [1+;&?-%i][l-($ 

where 

1D 
X=2R2P,(0)' r=f (7) 

u B 
u=Pm(O), “=K (8) 

F = CceciB) 

(ci - ciB) (9) 

CD Sk 
B = ci[Sh,-(l- T&2] (10) 

(11) 

(12) 

(The parameter Sh, is the wall Sherwood number and 
the parameter @ is the ultrafiltration Peclet number.) 

It may be noted that the above equations with In terms of the above-defined dimensionless quan- 
ultrafiltration velocity rw = 0 refer to pure dialysis tities, the system of basic equations (l)-(6) transforms 
WA. to 
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aZF 1aF uaF 
(13) 

F=l atx=O (14) 

aF 
z+[Sh,,.-(1-T&IF=0 atr=l, x>O 

(15) 

aF 
d,=O atr=O 

+-4E,@)g, v=ff, 
1 

24, = $(l-4E,Jlx) (17) 
I 

where 

df g = 2do’ f = (E,r’-E2r4+E,r6-E4r*) (18) 

E,=I+$ E,=;+$, E”=;, E4=% 

(The parameter R, is the ultrafiltration Reynolds 
number.) 

If we set R, = $ = 0 in the above dimensionless 
equations (13)-( 19), we obtain those of pure dialysis 
case. This is not found with the study of Jagannathan 
and Shettigar [7]. 

Using variable separable method and, hence, taking 

F = X(x) Y(r) (21) 

equations (13), (15) and (16) are reduced to 

+(l-4E,l(rx)X’+fi’X= 0 (22) 
1 

y +(f-&)r.+p@~= 0 (23) 

Y’+[Sh,-(I-T,)$]Y=O atr= 1 (24) 

Y’=O atr=O (25) 

where fi is an unknown parameter and is required to 
be determined. 

Equation (22) has as its solution 

X = (1 -~E,$x)~“~? (26) 

A solution to equation (23), subject to the boundary 
conditions (24) and (25), can be obtained by the 
Frobenius method, i.e. by taking 

Y= 2 abrZn (27) 
n=O 

which, when substituted back into equation (23), 
admits the following values for the constants a,, : 

a0 = 1 

a 21+8 =~[((4'+12)JI-B2}E,a,its 

+{28Z-(4i+8)~}E2a~i+4+{(4i+4)~-3~2} 

x Ejazi+ 2 + (48’ - W)$W4a2il (28) 

where 

i= -3, -2, -l,O, 1,2,. . . 

a_2 = a_4 = a_6 = 0 (29) 

and satisfies equation (24) by demanding 

$o[2n+sh,-(1-T,)+]a2. = 0. (30) 

The roots of equation (30), denoted by /?,,,, m = 1, 
2 ,*.*, are the eigenvalues. 

In using the initial condition given by equation (14), 
the solution for the system of equations (13)-(16) is 
given as follows : 

F= 5 A,X,,,Y,,, (31) 
In=, 

where X,,, denotes X and Y,,, denotes Y when /I denotes 
/?m and the coefficients A,,,, called eigenconstants, are 
given by 

p=J(i-Jl(t)f)dr. (33) 

The solution for the local concentration, c, is there- 
fore given by 

c = ciB+ci(l -B) i A,(1 -~E,$x$‘~+’ 
m=l 

x {~oa$?r2n}] (34) 

where a$:) denotes a2” when fi denotes pm. 
The expressions for wall concentration c,, central 

line concentration c,id and normal1 wall concentration 
gradient (-&z/8),,, are given by (using equation 

(34)) 

C, = CiB+Ci(l MB) f A,(1 -~E~‘I’x)“‘~’ 
m-1 

x f a$;) 
{ II (35) 

n=O 

cmid = ciB+ci(l -B) f [A,(1 -4E,‘l’~)~:‘~~] 
In=, 

(36) 
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x { -~02d?}]]. (37) 

By definition, the mixing-cup concentration, denoted 
by c~, is to be calculated according to 

f2n I-R 

Jo Jo 
cM= 2% R 

ss 

(38) 

iifdrd6 
0 0 

which under the present non-dimensionalization 
scheme transforms to 

2 1 
CM = - 

s 
cur dr. 

ulll 0 
(39) 

Using the expressions of c, u and u, already given in 
this section, it is found that 

CM = ciB+2ci(l -B) f A,(1 -4E,Yxy:'4'Y 
m=l 

x i. a$? 
I ( 

$l - $2 + $Zj - 2)}]. (40) 

The computation of the eigenconstants A,,, involves 
a substantial amount of work, as it involves numerical 
integration (see equation (32)). In fact, Jagannathan 
and Shettigar [7] also obtained the same type of equa- 
tion for their eigenconstants and used a numerical 
method of integration to compute them. Numerical 
integration can be avoided if one gives an exact ana- 
lytical solution for the eigenconstants. With reference 
to this a calculation was done in the present work, 
where certain operations were performed with equa- 
tion (23) and equations (24) and (25) were used, and 
the following exact analytical solution for A,,, was 
obtained : 

A,=.m 
-{S/r,-(l-T,)Y} 

1' 

1 C {2n+Sh,-(1-TR)Y}~2a~, 
?I= 1 1 B-B, 

m=l,2,... (41) 

where 

da,, 
a>. = __ 

dC6’)’ 
n= 1,2 >.... 

It may be noted that the computer time taken by 
the above analytical solution for A, is negligible as 
compared to that taken by a solution for A,,, which 
involves numerical integration. 

The results of the case of pure dialysis are not 
deducible from the results given in Jagannathan and 
Shettigar [7], but are easily deducible by setting 
R, = t,b = 0 in the present results that have appeared 
after equation (21) excepting the result for X, equa- 

tion (26), for which mathematical limits are to be 
evaluated. It is easily obtained that 

limX= exp(-fi2x) 
Y-0 

(43) 

where b is to be regarded to be governed by equation 
(30) with R, = $ = 0. 

3. RESULTS AND DISCUSSION 

In this section, some results of Jagannathan and 
Shettigar [7] are compared with the corresponding 
results based on the present analysis. Specifically 
speaking, their Figs. 3, 5 and 6 are referred to in the 
discussions here. Following Jagannathan and Shet- 
tigar [7], the cases of vanishing dialysate bulk con- 
centration and resistance (i.e. cn = 0 and K, = mem- 
brane permeability), which refer to a sufficiently fast 
dialysate flow with well-mixing, are referred to in the 
present discussions. The first three figures in the pre- 
sent paper are based on the present analysis and cor- 
respond, respectively, to Figs. 3, 5 and 6 of Jagan- 
nathan and Shettigar. 

Figure 1 shows mixing-cup concentration as a func- 
tion of x for values of x up to 0.72, whereas, Fig. 3 of 
Jagannathan and Shettigar shows the same for the 
values of x up to 0.45. In Fig. 3 of Jagannathan and 
Shettigar, it is seen that the mixing-cup concentration 
curves which meet at x = 0 are diverging, and that 
this divergence increases as x increases and is such 
that it is indicated that the curves are not likely to 
converge in any sub-range of x. In the present Fig. 
1, the mixing-cup concentration curves are seen to 
converge around x = 0.45. It is also observed that the 
quantitative change that takes place in the mixing-cup 
concentration in going from zero ultrafiltration to 
non-zero ultrafiltration is significantly different in Fig. 
3 of ref. [7] as compared to the present Fig. 1. This 
quantitative change is seen to be more in their figure. 
It is noteworthy that Jagannathan and Shettigar’s 
figure shows that the effect of ultrafiltration is to 
increase the mixing-cup concentration at all x > 0. 
Therefore, it is interesting that the present Fig. 1 
shows that the effect of ultrafiltration is to increase 
the mixing-cup concentration at all x > 0 up to a 
certain x and then to decrease it at all the remaining 
higher x. A physical explanation for this may be as 
follows. 

The pure dialysis case mixing-cup concentration 
shown in the present Fig. 1 is intluenced by two 
factors, namely : (1) wall directed radial fluid motion 
in the duct ; and (2) axial fluid motion reduction every- 
where in the region x > 0 and increasing of the axial 
fluid motion reduction with x in the duct, which 
appear only as a result of ultrafiltration. 

The effect of (1) is to increase the mixing-cup con- 
centration, because the fluid that is convected into the 
wall is convected from the immediate neighbourhood 
of the wall and the solute concentration in the immedi- 
ate wall neighbourhood is smaller than that in and 
around the centre. On the other hand, the effect of (2) 
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FIG. 1. Mixing-cup concentration vs axial distance for constant Sh, and various JI. 

is to decrease the mixing-cup concentration, because 
the lower the axial motion of fluid the lower is the 
local concentration in the flow field in the duct. The 
effect of (1) has its maximum intensity near the mass 
transfer entrance section, x = 0, as the concentration 
differences near the wall are maximum there. On the 
other hand, the effect of (2) has its minimum intensity 
near x = 0, as axial fluid motion reduction is mini- 
mum here. Thus, out of the effects of (1) and (2), the 
effect of (1) is dominant near x = 0. However, the 
effect of (2) increases as x increases, because the axial 
fluid motion reduction increases as x increases. There- 
fore, at a distance away from the mass transfer 
entrance section in the axial flow direction, the effect 
of (2) overtakes and dominates that of (1). Thus the 
given ultratiltration has the effect of increasing the 
mixing-cup concentration at all x > 0 up to certain x, 
say, at all x satisfying 0 < x -C x,, and then that of 
decreasing the mixing-cup concentration at all the 
remaining x > x,. 

Figure 2 of the present paper shows local con- 
centration as a function of the radial coordinate r at 
fixed x, namely x = 0.45, and for a fixed Sherwood 
number. In the corresponding Fig. 5 of Jagannathan 
and Shettigar, the local concentration curves are 
almost parallel to each other, whereas the present 
local concentration curves (Fig. 2) are not distinctly 
parallel. In the present Fig. 2, the curves are close to 
each other at r = 0 and have maximum separation 
among themselves at r = 1. It is also observed that 
the upward shifting of the local concentration curve, 
as a result of going from zero ultrafiltration to a non- 
zero ultrafiltration, in this figure is quantitatively 
different from that in Fig. 5 of Jagannathan and Shet- 
tigar. This upward shifting is significantly smaller in 
Fig. 2 than in their Fig. 5. Further, their figure shows 
that local concentration at any r increases, and 
increases only, with the increase in ultrafiltration vel- 
ocity, as no two curves of theirs are intersecting. How- 
ever, the picture with Fig. 2 is somewhat different 
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FIG. 2. Local concentration vs radial distance for constant Sh,and various $. 

in that some curves are intersecting and the local 
concentration at any r in a neighbourhood of r = 0 
decreases with the increase in ultrafiltration velocity 
if the ultr~itration velocity is increased beyond a 
certain value. This may be explained as follows. The 
wall directed radial fluid motion is smaller in the vicin- 
ity of the centre, r = 0, than in the vicinity of the wall, 
r = 1. Therefore, the effect of this fluid motion to 
increase local concen~ation is less at and around r = 0 
rhan at and around r = 1. That is one reason that 
the upward shifting of concentration profile with 
increments in ~trafiltration velocity in Fig. 2 is less in 
the vicinity of r = 0 than in rhe vicinity of r = 1. 
Further, as ~trafiltration velocity increases, the effect 
of the radial fluid motion around the centre, r = 0, 
does not increase as fast as that of axial fluid motion 
reduction (where the et&et of axial fluid motion 
reduction is to reduce local concentration), par- 
ticularly at such a distant location as x = 0.45. There- 
fore, if the ultra~tra~on velocity is increased beyond 
a certain value, the local concentration is likely to 
decrease at and around r = 0. 

The next figure of the present paper, i.e. Fig. 3, 
shows local concentration as a function of the radial 
coordinate r at the same fixed X, i.e. x = 0.45, referred 
to fixed non-zero and zero valms of ultra~t~~on 
velocity at various membrane permeabilities. The cor- 
responding Fig. 6 of Jagannathan and Shettigar shows 
that, at all wall Sherwood mnnbers, the local con- 
centration is higher in the case oft& # 0 than in the 
case of Ifi F 0. However, this is true at small Sherwood 
numbers, which may be explained as follows. As local 
concentration decreases and nonuniformity in local 
~n~ntration dist~bution increases with the increase 
in membrane permeability, i.e. with the increase in 

wall Sherwood mm&r, the effect of the axial fluid 
motion reduction, which is to be felt by, and is to 
reduce, this concentration, increases as wall Sherwood 
number increases. As has been mentioned already, 
this effect also increases with X. Therefore, at such a 
distant location as x = 0.45, the effect of axial fluid 
motion reduction is likely to become dominant and, 
therefore, local concentration is likely to be lower in 
the case of $ # 0 than in the case of $ = 0 if wail 
Sherwood number is increased beyond its certain 
value. This may be seen in Fig, 3, wherein the con- 
~ntration profile of the case of $ f 0 is below that of 
the case of JI = 0 when Sh, >, 0.3507. 

In the remai~ng part of this section, we will refer 
to a specific case. We take 2R = 0.02 cm and L = 12 
cm, as these values of hollow fibre diameter and 
length, respectively, are of interest with reference to 
modem artificial kidney [I]. With regard to mem- 
branes that form walls of hollow fibres, we consider 
cuprophan (CUP) and polyacrylonitrile (PAN) 
because they are representative of membranes used in 
the modern hemodi~yzer [9]. As far as solutes are 
concerned, we take urea and vitamin B-12, as the 
former is found in the largest quantity among the 
small molecules in blood and the latter has been recog- 
nized as a middle molecule marker [ lo]. In order to 
be within clinical limits, as the blood flow rate to, 
and ultrafiltration rate in, a dialyzer are around 12 
and 3 1 h- I respectively, we take z&(O) = 0.53 cm s- 1 
and three values for the ultrafiltration velocity, viz. 
r’, = 0.0, 0.15 and 0.30 cm h-“. The largest value 
corresponds to V = 3 1 h-’ for a 1 m2 hemodialyzer. 
Using these values and v = 1.388 x lo-* cm* s-*, the 
numerical values of wall Sherwood number Sh,, 
ultrafiltration Peclet number + and ultraiiItration 
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FIG. 3. Local concentration vs radial distance for constant $ and various Sh,. 

Reynolds number R, are determined, and are shown 
in Tables 1 and 2. In Table 1, the references for the 
values of membrane permeability P,, diffusivity 
coefficient D and membrane transmittance coefficient 
TR are [lo], [ll] and [12] respectively. 

Figure 4 shows the variation of local concentration 
with radial coordinate r at three axial locations and 
for two non-zero ultrafiltration velocities. We note 
that, in going from pure dialysis to combined dialysis 
and ultrafiltration, local concentration decreases in 
the vicinity of centre, i.e. near r = 0, and then increases 
at all remaining higher values of r. However, this 
behaviour is different at different axial positions. 

Figure 5 exhibits the variation of dimensionless 
normal wall concentration gradient in the main flow 
direction. It is seen that normal wall concentration 
gradient decreases as x increases. We observe that this 
decrease is gradual with the axial coordinate. We also 
note that in going from zero ultrafiltration to non- 
zero ultrafiltration the wall concentration gradient is 
decreased with ultrafiltration velocity. 

Figure 6 shows the variation of central line con- 
centration with axial coordinate at different ultrafil- 
tration velocities. It is seen that the central line con- 
centration decreases as x increases. It is also seen 
that up to a certain axial distance the central line 

Table 1. Numerical values of wall Sherwood number and membrane transmittance 
coe5cient 

Solutes 
Membranes 

Urea Vitamin B-12 
PAN CUP PAN CUP 

D (cm2 s-‘) 1.0 x 1o-5 0.23875 x lo-’ 
13.2 x lo-’ 11.5 x lo-’ 2.35 x lo-’ 0.59 x lo-’ 
1.32 1.15 0.984293 19 0.24712041 
1.0 1.0 0.94 0.629 

Table 2. Numerical values of ultratiltration Peclet and Reynolds 
numbers 

VW (cm h-‘) 0.0 0.15 0.30 
&ma) 0.0 0.0 0.30019 0.04166 x IO--” 0.60038 0.08332 x IO-’ 

$ (vitamin B-12) 0.0 0.17452 0.34904 



FIG. 4. Local concentration vs radial distance at TR = 0.94 in the cases ofvitamin B- I2 and polyacrylonitrile. 
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FE. 5. Normal wall ~R~ntra~~~ gradient -s axial distance at TR = O.&Z9 in the cases of vitamin B-12 
and cuprophan. 



Mass transfer in a circular conduit dialyzer 599 

0.85 

0.80 

I 0.75 
Cmid 

y- 

0.70 

0.65 

0.60 

0 -55 

O-50 

04s 

O-&E I I , 

42 -20 .20 -36 

3) y = 0.08332, 

R,= 0.60038~10~ 

x- 

FIG. 6. Central line concentration vs axial distance in the cases of urea and cuprophan. 

concentration increases with ultrafiltration velocity, 
and then it decreases with ultrafiltration velocity at 
the remaining higher values of x. 

Figure 7 exhibits the wall concentration as a func- 
tion of x. We observe that wall concentration 
decreases as x increases. It is seen that, due to non- 
zero Pw,, the wall concentration increases at all x. 
However, curves reveal that at some higher x the non- 
zero ultrafiltration may reduce the wall concentration. 

Figure 8 shows the dimensionless mixing-cup con- 
centration as a function of x at zero and non-zero 
ultrafiltration velocities. The value of the mixing-cup 
concentration in all cases is nearly unity at the mass 
transfer entrance section, i.e. at x = 0. 

4. CONCLUDING REMARKS 

An exact analytical solution for a steady state sol- 
ute concentration distribution in a circular duct where 
mass transfer occurs due to simultaneous dialysis and 
ultrafiltration has been obtained by using variable 
separable method. The solution satisfies the necessary 
requirement that it should yield the solution of the 
pure dialysis case in the limit ultraflltration tending to 
zero. Exact analytical expressions have been obtained 
for the eigenconstants of the solution, which implies 
a substantial reduction of numerical work and con- 
siderable saving of computer time. 

It has been found that the computer time consumed 
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FIG. 7. Wall concentration vs axial distance at TR = 0.94 in the cases of vitamin B-12 and polyacrylonitrile. 

by an example of combined dialysis and ultrafiltration 
is nearly half of that consumed by the corresponding 
example of pure dialysis. 
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FIG. 8. Mixing-cup ~n~ntration vs axial distance at 7’s = 0.94 in the cases of vitamin B-12 and poly- 
acrylonitrile. 

SUR LE TRANSFERT DE MASSE DANS UN DIALYSEUR CYLINDRIQUELORSQUE 
L’ULTRAFILTRATION EST COUPLEE AVEC LA DIALYSE 

Resnm&-On considere theoriquement le transfert dun solute dans un fluide newtonien en ecoulement 
laminaire traversant un conduit cylindrique permeable, avec un faible flux radial de fluide (ultrafiltration) 
a la paroi du conduit. Des hypotheses sont faites qui sont satisfaisantes dans un dialyseur d’essai. Une 
solution analytique exacte pour le profil de concentration est obtenue en utilisant la methode de separation 
des variables. Elle reduit a la solution de la dialyse pure lorsque l’ultrafiltration tend vers zero. Des 
expressions analytiques exactes sont d&iv&es pour les valeurs propres. Cette solution est appliqu&e au 
transfert massique sanguin dans une fibre creuse simulant un rein pour simuler la dialyse et ~ultmfiltration 

simultan&es. Des comparaisons sont faites avec des travaux ulterieurs. 

ZUM STOFFAUSTAUSCH IN EINEM RGHREN-DIALYSATOR BEI GEKOPPELTER 
ULTRAFILTRATION UND DIALYSE 

Z~~f~~-~r Transport einer Liisung durch ein permeables xylindrisches, von einem new- 
tonschen Fluid laminar d~chstr~mtes Rohr wird theoretisch betrachtet. An der Roh~and existiert ein 
kleiner radialer Fluidstrom (Ultrafiltration). Es werden Annahmen gemacht, weiche durch Messungen in 
einem Test-Dialysator gerechtfertigt worden sind. Fiir das Konzentrationsprofil wird eine exakte analy- 
tische Lijsung mittels der Trennung der Variablen ermittelt. Die notwendige Forderung, daB die Liisung 
fiir den Grem&ll einer verschwindenden Ultrafiltration die reine Dialyse beschreibt, ist erfiillt. Fur die 
Eigenwerte der Losung werden exakte analytische Ausdticke hergeleitet. Diese L&sung wird angewendet 
auf den Stoffaustausch einer Blutstromung durch eine Hohlfaser in einer kiinstlichen Niere, in der 

gleichzeitig Dialyse und Ultr~tration auftritt. Vergleiche mit frtiheren Arbeiten werden angestellt. 
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MACCOIlEPEHOC B KPYrJIOM IIPOTOrIHOM ~MAJIH3ATOPE l-IPH B3AMMOCBII3A 
llPOU;ECCOB YJIbTPAUGiJlbTPA~kII I4 j&L4JNi3A 

Aimomu8n---TeopeT~ecx~ pacma~pmaewf nepenoc pacmopeinioro Bewecrsa npvr nat.miapiioM 
feseiimi mo~o~oec~oil mwmcm B apyrnohi KaHane c ~H~~eM~ CTeHKaksi, repe3 KoTopbxe 

IlpoHCXOJIHT He6oRbiIIoe pa2siazbHoe Te=ieHwe X~~WOCTH (yJibTpZl@ilbTpaUHK). &XlBllnbHOCTb cnenae- 

H~IX npennonoxceHH% nposepae~cn Ha OII~ITHOM ruranH3aTope. Me-rono~ paww.neHHn nepeMeHHblx 
nonyrewo ToyHoe am.mmm!cme pewearre Ann npo@m xoHuempamti. Btmoneeso Heo6xomme 
yCJIOBI%!, COI-J-MCHO KOTOpMy PWleHHe XOJlXCWO CTpe&GiTbCK K ptXllt%tHlo B CJly¶ae ‘IHCTOTO AHWlSi3a B 

npenene npx crpebf.neHkiH ynbTpa@inbTpawiH K ~ynto. ,JJgr co6crnenx~x 3HaueHd ~OCTOIIHHMX 

perueww nonpew TOwihlC 8HaRHTH’ifCKHC BblpaxeHHa. PerueiiHe HClIOJlb3OBaHO npHMeHHTenbH0 K 

uepeiiocy Mac&8 IlpEi TewIixH KpOBH B nycToTeJlol BO~OKHR~~~ ~CKy~~~O~ UO’IKe, B ~0~0poii 

O&HOBpeMeHHO IIpOHCXOiWT mpOIWCba mIHBRii3a ii YnbTpa~~bTp~H. &HO CpaiWieHHe C pe3yJEbTa- 

TaMH PaHCC R~BOEeHHOrO HCC~C~OBaHHff. 


